Saturday, August 13, 2016

Revisiting some ornithological roots

The years 1883-1885 were tumultuous in the history of zoology in India. A group called the Simla Naturalists' Society was formed in the summer of 1885. The founding President of the Simla group was, oddly enough, Courtenay Ilbert - who some might remember for the Ilbert Bill which allowed Indian magistrates to make judgements on British subjects. Another member of this Simla group was Henry Collett who wrote a Flora of the Simla region (Flora Simlensis). This Society vanished without much of a trace. A slightly more stable organization was begun in 1883, the Bombay Natural History Society. The creation of these organizations was precipitated by the emergence of a gaping hole. A vacuum was created with the end of an India-wide correspondence network of naturalists that was fostered by a one-man-force - that of A. O. Hume. The ornithological chapter of Hume's life begins and ends in Shimla. Hume's serious ornithology began around 1870 and he gave it all up in 1883, after the loss of years of carefully prepared manuscripts for a magnum opus on Indian ornithology, damage to his specimen collections and a sudden immersion into Theosophy which also led him to abjure the killing of animals, taking to vegetarianism and subsequently to take up the cause of Indian nationalism. The founders of the BNHS included Eha (E. H. Aitken was also a Hume/Stray Feathers correspondent), J.C. Anderson (who was a Simla naturalist) and Phipson (who was from a wine merchant family with a strong presence in Simla).

Shimla then was where Hume rose in his career (as Secretary of State, before falling) allowing him to work on his hobby project of Indian ornithology by bringing together a large specimen collection and conducting the publication of Stray Feathers. Through readings, I had a constructed a fairytale picture of the surroundings that he lived in. Richard Bowdler Sharpe, a curator at the British Museum who came to Shimla in 1885 wrote (his description  is well worth reading in full):
... Mr. Hume who lives in a most picturesque situation high up on Jakko, the house being about 7800 feet above the level of the sea. From my bedroom window I had a fine view of the snowy range. ... at last I stood in the celebrated museum and gazed at the dozens upon dozens of tin cases which filled the room ... quite three times as large as our meeting-room at the Zoological Society, and, of course, much more lofty. Throughout this large room went three rows of table-cases with glass tops, in which were arranged a series of the birds of India sufficient for the identification of each species, while underneath these table-cases were enormous cabinets made of tin, with trays inside, containing series of the birds represented in the table-cases above. All the specimens were carefully done up in brown-paper cases, each labelled outside with full particulars of the specimen within. Fancy the labour this represents with 60,000 specimens! The tin cabinets were all of materials of the best quality, specially ordered from England, and put together by the best Calcutta workmen. At each end of the room were racks reaching up to the ceiling, and containing immense tin cases full of birds. As one of these racks had to be taken down during the repairs of the north end of the museum, the entire space between the table-cases was taken up by the tin cases formerly housed in it, so that there was literally no space to walk between the rows. On the western side of the museum was the library, reached by a descent of three stops—a cheerful room, furnished with large tables, and containing, besides the egg-cabinets, a well-chosen set of working volumes. ... In a few minutes an immense series of specimens could be spread out on the tables, while all the books were at hand for immediate reference. ... we went below into the basement, which consisted of eight great rooms, six of them full, from floor to ceilings of cases of birds, while at the back of the house two large verandahs were piled high with cases full of large birds, such as Pelicans, Cranes, Vultures, &c.
I was certainly not hoping to find Hume's home as described but the situation turned out to be a lot worse. The first thing I did was to contact Professor Sriram Mehrotra, a senior historian who has published on the origins of the Indian National Congress. Prof. Mehrotra explained that Rothney Castle had long been altered with only the front facade retained along with the wood-framed conservatories. He said I could go and ask the caretaker for permission to see the grounds. He was sorry that he could not accompany me as it was physically demanding and he said that "the place moved him to tears." Professor Mehrotra also told me about how he had decided to live in Shimla simply because of his interest in Hume! I left him and walked to Christ Church and took the left branch going up to Jakhoo with some hopes. I met the caretaker of Rothney Castle in the garden where she was walking her dogs on a flat lawn, probably the same garden at the end of which there once had been a star-shaped flower bed, scene of the infamous brooch incident with Madame Blavatsky (see the theosophy section on Hume's biography in Wikipedia). It was a bit of a disappointment however as the caretaker informed me that I could not see the grounds unless the owner who lived in Delhi permitted it. Rothney Castle has changed hands so many times that it probably has nothing to match with what Bowdler-Sharpe saw and the grounds may very soon be entirely unrecognizable but for the name plaque at the entrance. Another patch of land in front of Rothney Castle was being prepared for what might become a multi-storeyed building. A botanist friend had shown me a 19th century painting of Shimla made by Constance Frederica Gordon-Cumming. In her painting, the only building visible on Jakko Hill behind Christ Church is Rothney Castle. The vegetation on Shimla has definitely become denser with trees blocking the views.
So there ended my hopes of adding good views (free-licensed images are still misunderstood in India) of Rothney Castle to the Wikipedia article on Hume. I did however get a couple of photographs from the roadside. In 2014, I managed to visit the South London Botanical Institute which was the last of Hume's enterprises. This visit enabled the addition a few pictures of his herbarium collections as well as an illustration of his bookplate which carries his personal motto.

Clearly Shimla empowered Hume, provided a stimulating environment which included several local collaborators. Who were his local collaborators in Shimla? I have only recently discovered (and notes with references are now added to the Wikipedia entry for R. C. Tytler) that Robert (of Tytler's warbler fame - although named by W E Brooks) and Harriet Tytler (of Mt. Harriet fame) had established a kind of natural history museum at Bonnie Moon in Shimla with  Lord Mayo's support. The museum closed down after Robert's death in 1872, and it is said that Harriet offered the bird specimens to the government. It would appear that this collected finally went to Hume.

Hume's idea of mapping rainfall
to examine patterns of avian distribution
It was under Lord Mayo that Hume rose in the government hierarchy. Hume was not averse to utilizing his power as Secretary of State to further his interests in birds. He organized the Lakshadweep survey with the assistance of the navy ostensibly to examine sites for a lighthouse. He made use of government machinery in the fisheries department (Francis Day) to help his Sind survey. He used the newly formed meteorological division of his own agricultural department to generate rainfall maps for use in Stray Feathers. He was probably the first to note the connection between rainfall and bird distributions, something that only Sharpe saw any special merit in. Perhaps placing specimens on those large tables described by Sharpe allowed Hume to see geographic trends.

Hume was also able to appreciate geology (in his youth he had studied with Mantell ), earth history and avian evolution. Hume had several geologists contributing to ornithology including Stoliczka and Ball. One wonders if he took an interest in paleontology given his proximity to the Shiwalik ranges. Hume invited Richard Lydekker to publish a major note on avian osteology for the benefit of amateur ornithologists. Hume also had enough time to speculate on matters of avian biology. A couple of years ago I came across this bit that Hume wrote in the first of his Nests and Eggs volumes (published post-ornith-humously in 1889):

Nests and Eggs of Indian birds. Vol 1. p. 199
I wrote immediately to Tim Birkhead, the expert on evolutionary aspects of bird reproduction and someone with an excellent view of ornithological history (his Ten Thousand Birds is a must read for anyone interested in the subject) and he agreed that Hume had been an early and insightful observer to have suggested female sperm storage.

Shimla life was clearly a lot of hob-nobbing and people like Lord Mayo were spending huge amounts of time and money just hosting parties. Turns out that Lord Mayo even went to Paris to recruit a chef and brought in an Italian,  Federico Peliti. (His great-grandson has a nice website!) Unlike Hume, Peliti rose in fame after Lord Mayo's death by setting up a cafe which became the heart of Shimla's social life and gossip. Lady Lytton (Lord Lytton was the one who demoted Hume!) recorded that Simla folk "...foregathered four days a week for prayer meetings, and the rest of the time was spent in writing poisonous official notes about each other." Another observer recorded that "in Simla you could not hear your own voice for  the grinding of axes. But in 1884 the grinders were few. In the course of my service I saw much of Simla society,  and I think it would compare most favourably with any other town of English-speaking people of the same size. It was bright and gay. We all lived, so to speak, in glass houses. The little bungalows perched on the mountainside wherever there was a ledge, with their winding paths under the pine trees, leading to our only road, the Mall." (Lawrence, Sir Walter Roper (1928) The India We Served.)

A view from Peliti's (1922).
Peliti's other contribution was in photography and it seems like he worked with Felice Beato who also influenced Harriet Tytler and her photography. I asked a couple of Shimla folks on the location of Peliti's cafe and they said it was  the Grand Hotel (now a government guest hose). I subsequently found that Peliti did indeed start Peliti's Grand Hotel, which was destroyed in a fire in 1922, but the centre of Shimla's social life, his cafe, was actually next to the Combermere Bridge (it ran over a water storage tank and is today the location of the lift that runs between the Mall and the Cart Road). A photograph taken from "Peliti's" clearly lends support for this location as do descriptions in Thacker's New Guide to Simla (1925). A poem celebrating Peliti's was published in Punch magazine in 1919. Rudyard Kipling was a fan of Peliti's but Hume was no fan of Kipling (Kipling seems to have held a spiteful view of liberals - "Pagett MP" has been identified by some as being based on W.S.Caine, a friend of Hume; Hume for his part had a lifelong disdain for journalists. Kipling's boss, E.K. Robinson started the British Naturalists' Association while E.K.R.'s brother Philip probably influenced Eha.

While Hume most likely stayed away from Peliti's, we see that a kind of naturalists social network existed within the government. About Lord Mayo we read: 
Lord Mayo and the Natural History of India - His Excellency Lord Mayo, the Viceroy of India, has been making a very valuable collection of natural historical objects, illustrative of the fauna, ornithology, &c., of the Indian Empire. Some portion of these valuable acquisitions, principally birds and some insects, have been brought to England, and are now at 49 Wigmore Street, London, whence they will shortly be removed. - Pertshire Advertiser, 29 December 1870.
Another news report states:
The Early of Mayo's collection of Indian birds, &c.

Amids the cares of empire, the Earl of Mayo, the present ruler of India, has found time to form a valuable collection of objects illustrative of the natural history of the East, and especially of India. Some of these were brought over by the Countess when she visited England a short time since, and entrusted to the hands of Mr Edwin Ward, F.Z.S., for setting and arrangement, under the particular direction of the Countess herself. This portion, which consists chiefly of birds and insects, was to be seen yesterday at 49, Wigmore street, and, with the other objects accumulated in Mr Ward's establishment, presented a very striking picture. There are two library screens formed from the plumage of the grand argus pheasant- the head forward, the wing feathers extended in circular shape, those of the tail rising high above the rest. The peculiarities of the plumage hae been extremely well preserved. These, though surrounded by other birds of more brilliant covering, preserved in screen pattern also, are most noticeable, and have been much admired. There are likewise two drawing-room screens of smaller Indain birds (thrush size) and insects. They are contained in glass cases, with frames of imitation bamboo, gilt. These birds are of varied and bright colours, and some of them are very rare. The Countess, who returned to India last month, will no doubt,add to the collection when she next comes back to England, as both the Earl and herself appear to take a great interest in Illustrating the fauna and ornithology of India. The most noticeable object, however, in Mr. Ward's establishment is the representation of a fight between two tigers of great size. The gloss, grace, and spirit of the animals are very well preserved. The group is intended as a present to the Prince of Wales. It does not belong to the Mayo Collection. - The Northern Standard, January 7, 1871
And Hume's subsequent superior was Lord Northbrook about whom we read:
University and City Intelligence. - Lord Northbrook has presented to the University a valuable collection of skins of the game birds of India collected for him by Mr. A.O.Hume, C.B., a distinguished Indian ornithologist. Lord Northbrook, in a letter to Dr. Acland, assures him that the collection is very perfec, if not unique. A Decree was passed accepting the offer, and requesting the Vice-Chancellor to convey the thanks of the University to the donor. - Oxford Journal, 10 February 1877
Papilio mayo
Clearly Lord Mayo and his influence on naturalists in India is not sufficiently well understood. Perhaps that would explain the beautiful butterfly that was named after him shortly after his murder. It appears that Hume did not have this kind of hobby association with Lord Lytton, little wonder perhaps that he fared so badly!

Despite Hume's sharpness on many matters there were bits that come across as odd. In one article on the flight of birds he observes the soaring of crows and vultures behind his house as he sits in the morning looking towards Mahassu. He points out that these soaring birds would appear early on warm days and late on cold days but he misses the role of thermals and mixes physics with metaphysics, going for a kind of Grand Unification Theory:

And then claims that crows, like saints, sages and yogis are capable of "aethrobacy".
This naturally became a target of ridicule. We have already seen the comments of E.H. Hankin on this. Hankin wrote that if levitation was achieved by "living an absolutely pure life and intense religious concentration" the hill crow must be indulging in "irreligious sentiments when trying to descend to earth without  the help of gravity." Hankin despite his studies does not give enough credit for the forces of lift produced by thermals and his own observations were critiqued by Gilbert Walker, the brilliant mathematican who applied his mind to large scale weather patterns apart from conducting some amazing research on the dynamics of boomerangs. His boomerang research had begun even in his undergraduate years and had earned him the nickname of Boomerang Walker. On my visit to Shimla, I went for a long walk down the quiet road winding through dense woodland and beside streams to Annandale, the only large flat ground in Shimla where Sir Gilbert Walker conducted his weekend research on boomerangs. Walker's boomerang research mentions a collaboration with Oscar Eckenstein and there are some strange threads connecting Eckenstein, his collaborator Aleister Crowley and Hume's daughter Maria Jane Burnley who would later join the Hermetic Order of the Golden Dawn. But that is just speculation!

I got back from Annandale and then walked down to Phagli on the southern slope of Shimla to see the place where my paternal grandfather once lived. It is not a coincidence that Shimla and my name are derived from the local deity Shyamaladevi (a version of Kali).

The South London Botanical Institute

After returning to England, Hume took an interest in botany. He made herbarium collections and in 1910 he established the South London Botanical Institute and left money in his will for its upkeep. The SLBI is housed in a quiet residential area. Here are some pictures I took in 2014, most can be found on Wikipedia.

Dr Roy Vickery displaying some of Hume's herbarium specimens

Specially designed cases for storing the herbarium sheets.

The entrance to the South London Botanical Institute

A herbarium sheet from the Hume collection

Hume's bookplate with personal motto - Industria et Perseverentia

An ornate clock which apparently adorned Rothney Castle

Further reading

 An antique book shop had a set of Hume's Nests and Eggs (Second edition) and it bore the signature of "R.W.D. Morgan" - it appears that there was a BNHS member of that name from Calcutta c. 1933. It is unclear if it is the same person as Rhodes Morgan, who was a Hume correspondent and forest officer in Wynaad/Malabar who helped William Ruxton Davison.

Friday, July 29, 2016

Isostasy and Apostasy

What?! Those two words appear to have little to do with each other,  but they were at the heart of some conflict. The conflict between geology and religion in Europe. For outsiders in places like India, this conflict is hard to understand and is definitely not a part of public understanding of science.

I came to read up about isostasy, thrown off on a tangent from a research trajectory that began with something linked to Bangalore. That research ramble included forays into the life of William Lambton, the Great Trigonometrical Survey, errors in surveying and Himalayan geology. Along the way I noticed several characters who suddenly grew in interest on a recent trip to Italy. I realized that we know so little of the evolution of science and the history of tussles between religion and science. This seems especially a gap for those of us who live in the non-Christian world where science and fiction meld into each other.

Our story begins with the Earth. Several early scientists reasoned that the Earth
Archdeacon Pratt (1809-1871)

must have been a piece of irregular material which was either hot and liquid or as bits that broke off from a solid and behaved like a fluid over time to rearrange itself into a nearly spherical form. One early scientist in particular did the mathematics of it and figured out how much it would bulge at the equator on account of its rotation about an axis. Understanding the shape of the earth was an important part of navigation and that also translated to questions of Empire and supremacy. The man we are interested in, who wrote a treatise on the physics and geometry of the earth, was a brilliant mathematician, a Cambridge Wrangler (number 3 for 1833), who decided to take up a job as a clergyman in India just to have the free time and peace of mind to pursue mathematics. He was so good at his work that he was nearly appointed Bishop. He was not appointed and instead of him they chose Bishop Cotton, after whom many schools in India are named. Alumni of that school would probably have been far more proud if their school had instead been named as Bishop Pratt School after Archdeacon of Calcutta, John Henry Pratt.
Pratt was such a brilliant applied mathematician that he was would regularly be sought to solve problems faced by engineers and officials in the government. He would evaluate the strenght of metal bridges, arches and trusses. As a member of the Asiatic Society of Bengal, he attempted to put a date on ancient Indian writings on the basis of star positions. Pratt's biggest area of research was however on the shape and structure of the Earth. Early on, Archdeacon Pratt saw mountains as a problem! The problem really was that they shouldn't exist if one assumed the fluidity of the Earth. Assuming the fluid nature of the earth and the time available for the earth to become nearly spherical, the irregularities on the surface should be far smaller. Isostasy deals with the forces that resolve that problem.  Pratt was brought to think about mountains more deeply when Surveyor General Andrew Scott Waugh  (who succeeded George Everest) came to him with data that showed an odd pattern on errors in the estimation of the heights of peaks in the Himalayas. The peaks appeared to be higher when measured from far away and when measured from closer up they seemed to lose some of that height. The source of the problem was already known as the errors were lower when star references were used but the errors became great if theodolites were used in computing angles. Theodolites use plumblines to define the vertical and it was known that plumblines lean towards mountains due to their gravitational attraction. So the angle from downward vertical defined by the plumbline to the top of the peak of a mountain is less that what you would measure if the plumbline actually pointed to the true centre of the earth.

Now Pratt looked at the data more carefully and did some calculations and found that this plumbline attraction was not as great as it ought to have been. His estimate was based on volume and density for the Himalayas. Since it did not match up he decided that the density of the Himalayas that he used must be incorrect. He then suggested the idea that below the mountains, the material was much denser and that the mountains rose like fermenting dough, fluffy and of lower density and resting on a denser base. That is isostasy (and there is a standard model in geology named after him) but Pratt was a clergyman and his other big problem was that anyone looking at geology could not fail to find fault in Christian religious teaching. Pratt was deeply disturbed and he wrote a book called Scripture and Science not at Variance in 1856 and it went through several editions. That religion and science conflicted long before Darwin is often forgotten today. Before Darwin, the central issue was the age of the earth. Calculations were attempted by many and they all differed from scriptural views by several orders of magnitude. Part of the problem in this really was that the ones who made these estimates were not "scientists" in the modern sense of the world - many of them were in fact clergymen! These were the same clergymen who had taken to natural theology / natural history in the tradition of John Ray's advice to contemplate on the Works of Creation on Sundays. The trouble was that all this contemplation led to the growth of geological knowledge which left the clergymen-scientists deeply conflicted. 
Fossils seen on a walk on an Italian mountainside.

When early Europeans saw mollusc fossils on the tops of mountains, the early geologists were quick to use it as evidence of the Biblical floods. When I saw a few fossil molluscs, in the wild so to speak, on top of a mountain near Lake Como, I was filled with ecstasy. I put myself back in time by a couple of centuries to imagine what I might have made of it. Two centuries ago there were so many ideas floating around - there were competing theories of earth origins. Some saw from the evidence of volcanoes and rocks that the earth may have been hot to start with - the plutonists - while others favoured the idea that the earth was born under water - the neptunists. I suppose neptunism was more in line with scriptural ideas. Before this there were other geological debates including that between Catastrophism vs Uniformitarianism. It is easy to see how evidence and interpretation played such a big role in the development of science. I had read and researched about at least a couple of Italian clergyman-geologists (or naturalists) who had lived in the same district that I visited. Northern Italy produced Antonio Stoppani  (a force behind the natural history museum at Milan) and Ermenegildo Pini - subscribers of the Concordismo, an Italian movement to resolve the conflict between geology and religion. This Italian school tried to settle the matter by suggesting that the scriptures were not to be read so literally. Stoppani encouraged the study of geology by everyone. He wrote a popular book called Il Bel Paese (the beautiful country) that demonstrated how a knowledge of geology enhanced one's appreciation of the country. It was a best-seller and went into numerous editions and was a standard fixture in schools for a long time. A famous cheese manufacturer named his brand of cheese Il Bel Paese and that brand is now far better known!

The Grigne mountains. At the centre of this scene an
arch of land can be seen. This was carved by water during
the Ice Age.
Some Italian cheese inspired by geology!
People who could see geological evidence had the option of keeping their ideas to themselves. Wealthy people were probably more capable of expressing ideas freely as they had less to fear. Darwin had seen the case of the Devil's Chaplain in his youth and lived in fear of upsetting religious powers. It was the support of people like  Charles Lyell that let him publish. I have wondered often if the amateur-scientific establishment in colonial India, distanced from such social tensions lived with less fear. I have not seen an analysis of  such tensions or the lack of it in the  contents of the journals of learned societies in India.

I know however of one ornithologist who was influenced by the development of secular ideas - A.O. Hume. Hume learned a bit of geology under Gideon Mantell, a friend of Charles Lyell. He came from a family with a radical political affiliation and clearly did not subscribe to many ideas of Christianity. He sought spirituality, something free of the politics of religion, in the Theosophical movement founded by Madame Blavatsky. Sadly he found that organization too corrupted for his taste. At one point he sought to have Madame Blavatsky and others removed from the Theosophical Society for trickery and dishonesty! He earned the ire of the other members when he tried to define the aim of the Theosophical movement in a book. A person signing "K.H." (the Koot Humi a pseudonym possibly of Blavatsky herself) wrote: "I dread the appearance in print of our philosophy as expounded by Mr. H. I read his three essays or chaptes on God (?)cosmogony and glimpses of the origin of things in general, and had to cross out nearly all. He makes of us ''Agnostics''!! ''We'' do not believe in God because so far, ''we have no not have proof'', etc. This is preposterously ridiculous: if he publishes what I read, I will have H.P.B. or Djual Khool deny the whole thing; as I cannot permit our sacred philosophy to be so disfigured...."

Any readers residing in London may be interested in a talk on Hume and Theosophy on 19 September 2016.

I am hoping to visit Hume's home, Rothney Castle, at Shimla in early August 2016 and my next post will be on that topic.

Further reading

 Note:A bit of amusement for those who know me!
An Italian journalist had a brief conversation and
makes a mention of my tryst with Ermenegildo Pini!

Wednesday, June 8, 2016

The many shades of citizen science

Everyone is a citizen but not all have the same kind of grounding in the methods of science. Someone with a training in science should find it especially easy to separate pomp from substance. The phrase "citizen science" is a fairly recent one which has been pompously marketed without enough clarity.

In India, the label of a "scientist" is a status symbol, indeed many actually proceed on paths just to earn status. In many of the key professions (example: medicine, law) authority is gained mainly by guarded membership, initiation rituals, symbolism and hierarchies. At its roots, science differs in being egalitarian but the profession is at odds and its institutions are replete with tribal ritual and power hierarchies.

Long before the creation of the profession of science, "Victorian scientists" (who of course never called themselves that) pursued the quest for knowledge (i.e. science) and were for the most part quite good as citizens. In the field of taxonomy, specimens came to be the reliable carriers of information and they became a key aspect of most of zoology and botany. After all what could you write about or talk about if you did not have a name for the subjects under study. Specimens became currency. Victorian scientists collaborated in various ways that involved sharing information, sharing /exchanging specimens, debating ideas, and tapping a network of friends and relatives for more. Learned societies and their journals helped the participants meet and share knowledge across time and geographic boundaries.  Specimens, the key carriers of unquestionable information, were acquired for a price and there was a niche economy created with wealthy collectors, not-so-wealthy field collectors and various agencies bridging them. That economy also included the publishers of monographs, field guides and catalogues who grew in power along with organizations such as  museums and later universities. Along with political changes, there was also a move of power from private wealthy citizens to state-supported organizations. Power brings disparity and the Victorian brand of science had its share of issues but has there been progress in the way of doing science?

Looking at the natural world can be completely absorbing. The kinds of sights, sounds, textures, smells and maybe tastes can keep one completely occupied. The need to communicate our observations and reactions almost immediately makes one need to look for existing structure and framework and that is where organized knowledge a.k.a. science comes in. While the pursuit of science might seem be seen by individuals as being value neutral and objective, the settings of organized and professional science are decidedly not. There are political and social aspects to science and at least in India the tendency is to view them as undesirable and not be talked about so as to appear "professional".  

Being silent so as to appear diplomatic probably adds to the the problem. Not engaging in conversation or debate with "outsiders" (a.k.a. mere citizens) probably fuels the growing label of "arrogance" applied to scientists. Once the egalitarian ideal of science is tossed out of the window, you can be sure that "citizen science" moves from useful and harmless territory to a region of conflict and potential danger. Many years ago I saw a bit of this  tone in a publication boasting the virtues of Cornell's ebird and commented on it. Ebird was not particularly novel to me (especially as it was not the first either by idea or implementation, lots of us would have tinkered with such ideas, even I did with - BirdSpot - aimed to be federated and peer-to-peer - ideally something like torrent) but Cornell obviously is well-funded. I commented in 2007 that the wording used sounded like "scientists using citizens rather than looking upon citizens as scientists", the latter being in my view the nobler aim to achieve. Over time ebird has gained global coverage, but has remained "closed" not opening its code or discussions on software construction and by not engaging with its stakeholders. It has on the other hand upheld traditional political hierarchies and processes that ensure low-quality in parts of the world where political and cultural systems are particularly based on hierarchies of users. As someone who has watched and appreciated the growth of systems like Wikipedia it is hard not to see the philosophical differences - almost as stark as right-wing versus left-wing politics.

Do projects like ebird see the politics in "citizen-science"?
Arnstein's ladder is a nice guide to judge
the philosophy behind a project.
I write this while noting that criticisms of ebird as it currently works are slowly beginning to come out (despite glowing accounts in the past). There are comments on how it is reviewed by self-appointed police  (it seems that the problem seems to be not just in the appointment - indeed why could not have the software designers allowed anyone to question any record and put in methods to suggest alternative identifications - gather measures of confidence based on community queries and opinions on confidence measures), there are supposedly a class of user who manages something called "filters" (the problem here is not just with the idea of creating user classes but also with the idea of using manually-defined "filters", to an outsider like me who has some insight in software engineering poor-software construction is symptomatic of poor vision, guiding philosophy and probably issues in project governance ), there are issues with taxonomic changes (I heard someone complain about a user being asked to verify identification - because of a taxonomic split - that too a split that allows one to unambiguously relabel older records based on geography - these could have been automatically resolved but the lazy developers obviously prefer to get users to manage it), and there are now dangers to birds themselves. There are also issues and conflicts associated with licensing, intellectual property and so on. Now it is easy to fix all these problems piecemeal but that does not make the system better, fixing the underlying processes and philosophies is the big thing to aim for. So how do you go from a system designed for gathering data to one where you want the stakeholders to be enlightened. Well, a start could be made by first discussing in the open.

I guess many of us who have seen and discussed ebird privately could have just said I told you so, but it is not just a few nor is it new. Many of the problems were and are easily foreseeable. One merely needs to read the history of ornithology to see how conflicts worked out between the center and the periphery (conflicts between museum workers and collectors); the troubles of peer-review and open-ness; the conflicts between the rich and the poor (not just measured by wealth); or perhaps the haves and the have-nots. And then of course there are scientific issues - the conflicts between species concepts not to mention conservation issues - local versus global thinking. Conflicting aims may not be entirely solved but you cannot have an isolated software development team, a bunch of "scientists" and citizens at large expected merely to key in data and be gone. There is perhaps a lot to learn from other open-source projects and I think the lessons in the culture, politics of Wikipedia are especially interesting for citizen science projects like ebird. I am yet to hear of an organization where the head is forced to resign by the long tail that has traditionally been powerless in decision making and allowing for that is where a brighter future lies. Even better would be where the head and tail cannot be told apart.

Saturday, June 4, 2016

Ordering chicken

A few weeks ago, I was asked a few questions by a couple of friends relating to why the bird-groups in bird-books are ordered the way they are. The groupings themselves were not so much in question, it was only the sequence. Why do the larger birds come before the smaller birds? It then led to further questions on why the Galliformes (for example chicken or junglefowl) are considered representatives of an older branch of birds (simply sometimes stated as "primitive", and termed "basal" by cladists) compared to say crows. Part of the question was also the understanding that the sequence to a large extent has been around since the first bird-guides for the Indian region. It was hard to make a clean, coherent, non-anachronistic reconstruction particularly since the sequence has to a large extent been followed long before molecular biology took root. In trying to clarify this, at least for myself, I have been forced to look at some historic literature that few read in modern times. [Needless to say my research also led me to improve some Wikipedia biographies.]

Max Fürbringer (1846-1920)
We can skip the pre-Darwinian state largely because the birds were then put in groups whose order was largely decided by tradition and never questioned (at least not within birds which were themselves placed in the scala naturae / "ladder") - and in this we have already seen ideas such as Quinarianism that were followed by Jerdon in India. But why order birds? It appears that everyone wants some order when listing out all the birds of the world and like dictionaries they initially followed some kind of convention that did not need to be questioned. These lists beginning with that of Linnaeus include those of G.R. Gray and R.B.Sharpe. The sequence that Gray and Sharpe followed was based on one established by N.A.Vigors - again a quinarian. Whether the desire to get away from this sequence was related to the unpopularity of quinarianism, I do not know but the sequence followed in  modern bird books has its roots in a system that was established by two ornithologists who are sadly somewhat lesser known perhaps because their writings were in German. (Interestingly Jerdon's contemporary, Edward Blyth, taught himself German and had little tolerance for Jerdon's scheme that followed Swainson). The two Germans who matter for our analysis are Max Fürbringer (1846-1920) and Hans Gadow (1855–1928) [and they had a counterpart in botany Adolf Engler (1844-1930)]. Gadow by virtue of moving to Britain and writing in English is somewhat better known but his work draws greatly on a lot of hard work and thinking on the part of Fürbringer. 

Pierre Belon's comparative anatomy (1555)
After Darwin, the idea of genealogical trees was well adopted and it was also quite clear that evolutionary processes decidedly lacked order and the ragged bush representing the birds of the world had some bushy branches while others were skeletal and many where difficult to place. Now flattening out this bush (or at least the leaves on a 2-dimensional representation of the bush) and reducing it to a linear list can be done in many ways (computer literates will recognize only two - a breadth-first and a depth-first approach!). There were numerous ways in which the tree itself was being re-arranged (phylogenetics) starting with methods that went from the use of intelligent guesswork on the basis of morphological and anatomical characters to methods that reduced guesswork and attempted to reconstruct evolutionary history on the basis of DNA sequences. Ernst Mayr and Walter Bock referred to the "standard sequence" as one based on Gadow-Wetmore-Peters. Mayr and Bock also went to the extent of suggesting that the sequence be maintained independent of matters of phylogeny (then already showing signs of fluidity) so as to make communication easier. Modern bird-guidebook authors and publishers have obviously given that suggestion a pass. Mayr and Greenway in 1956 set three principles for the taxonomic sequence to be followed - (A) To follow as closely as possiblethe traditional arrangements, except where subsequent work has shown conclusively that a change is advisable (B) To place familes near each other whichare presumably closely related (C) To place the more primitive families near the beginning and the more advanced families near the end.

Back to Max Fürbringer who was a student of  Carl Gegenbaur and a great comparative anatomist. Comparative anatomy at this point had evolved from its early origins as an area of amateur investigation in medical studies. It was not just about looking at gross skeletal similarities but looked at minutiae such as the twisting of the tendons of the foot and the bones of the skull. Fürbringer made use of 51 characters, mostly internal anatomy but also some that included whether the state in which the young are born. He had worked earlier on reptiles and their musculature and was an expert on fossils and osteology as well. He gives special importance to the muscules and tendons on the shoulder. It is quite mind boggling to think of the time and effort it would take to dissect and examine the shoulders of so many kinds of birds, leave alone obtaining the specimens needed for it. Given that it has to be done over a significant length of time, it involves meticulous note making and sketching. Fürbringer identified the key characters for each of the bird groups and then he compared every pair of bird groups noting the number of common characteristics and the number of differing characters. He used this pair of numbers (matches and mismatches) to decide a measure of distance between the groups (what we would now call as phenetics - but all this was done before Hennig and the formal birth of cladistics). Gadow would, four years later in 1892, comment that Fürbringer was being a bit too precise (read "German"!) in doing this pair-wise distance computation and that this was unneeded overkill. Gadow also made some alterations, he emphasised that not all characters were equal and that the equal weightage for characters was inappropriate. So he decided based on his expertise that some of the relationships that Fürbringer saw were spurious. It is worth reading his original text:

The anatomical portion has been written with the view of abstracting there from a classification. In the meantime (after Huxley, Garrod, Forbes, Sclater, and Reichenow's systems) have appeared several other classifications: one each by Prof. Newton, Dr. Elliott Coues, Dr. Stejneger, Prof. Fuerbringer, Dr. R. B. Sharpe, and two or three by Mr. Seebohm. Some of these systems or classifications give no reasoning, and seem to be based upon either ornithological matters or upon inclination—in other words, upon personal convictions. Fuerbringer5s volumes of ponderous size have ushered in a new epoch of scientific ornithology. No praise can be high enough for this work, and no blame can be greater than that it is too long and far too cautiously expressed. For instance, the introduction of " intermediate " groups (be they suborders or gentes) cannot be accepted in a system which, if it is to be a working one, must appear in a fixed form.     In several important points I do not agree with my friend ; moreover, I was naturally anxious to see what my own resources would enable me to find out. This is my apology for the new classification which I propose in the following pages.

The author of a new classification ought to state the reasons which have led him to the separation and grouping together of the birds known to him. This means not simply to enumerate the characters which he has employed, but also to say why and how he has used them. Of course there are characters and characters. Some are probably of little value, and others are equivalent to half a dozen of them. Some are sure to break down unexpectedly somewhere, others run through many families and even orders;  but the former characters are not necessarily bad and the latter are not necessarily good. The objection has frequently been made that we have no criterion to determine the value of characters in any given group, and that therefore any classification based upon any number of characters however large (but always arbitrary, since composed of non-equivalent units) must necessarily be artificial and therefore be probably a failure. This is quite true if we take all these characters, treat them as all alike, and by a simple process of plus or minus, i. e. present or absent, large or small, 1, 2, 3, 4, &c, produce a "Key," but certainly not a natural classification.

To avoid this evil, we have to sift or weigh  the same characters every time anew and in different ways, whenever we inquire into the degree of affinity between two or more species, genera, families, or larger groups of creatures.

Of my 40 characters about half occur also in Fuerbringer's table, which contains 51 characters. A number of skeletal characters I have adopted from Mr. Lydekker's 'Catalogue of Fossil Birds' after having convinced myself, from a study of that excellent book, of their taxonomic value. Certain others referring to the formation of the rhamphotheca, the structure and distribution of the down in the young and in the adult, the syringeal muscles, the intestinal convolutions, and the nares, have not hitherto been employed in the Class of Birds.
Of course this merely mathematical principle is scientifically faulty, because the characters are decidedly not all equivalent. It may happen that a great numerical agreement between two families rests upon unimportant characters only, and a small number of coincidences may be due to fundamentally valuable structures, and in either case the  true affinities would  be obscured.

Of the 26 positive points not less than 19 are common to Falconidae, Psittaci, and Coccyges. In the remaining 7 points Psittaci and Falconidae agree together against Coccyges, namely nestlings, downs of young and adult, fifth cubital, temporal fossa, fleshy tongue, convolutions of intestines. Most of these characters seem important, especially the woolly nestlings, considering that Psittaci breed in holes, and agree in the convolutions in spite of the totally different food.
On the other hand, the sifting of the 14 negative characters shows On the other hand, the sifting of the 14 negative characters shows that in 13 of them the Parrots agree with Cuculidae or with Musophagidae, or with both, and differ along with the Coccyges from the Falconidae. The syrinx is an absolute specialization. Fuerbringer remarks that powder-downs, ceroma, and beak speak for Falconidae against Coccyges. Again, Psittaci and Falconidae differ greatly in the formation of the furcula, in nearly the whole of the muscular system, and in the bones of the wings and legs.
Conclusion.—The Psittaci are much more nearly allied to the Coccyges than to the Falconidae, and of the Coccyges the Musophagidae are nearer than the  Cuculidae because of the vegetable food, ventral pterylosis, presence of aftershaft, tufted oil-gland, absence of vomer, truncated mandible and absence of caeca.

Gadow's weighing and sifting probably went wrong there as a 2011 study re-established the closeness between the parrots and falcons. (Fürbringer had carefully compared them but he too had them branching apart widely).
Suh A, Paus M, Kiefmann M, et al. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nature Communications. 2011;2:443-. doi:10.1038/ncomms1448.
It is somewhat sad that Fürbringer is still hardly known in ornithological circles. Mayr and Bock call the bird-sequence used for so many years as the Gadow-Wetmore-Peter's sequence. (this despite Mayr being a historian of biology!) I saw with delight however that Tim Birkhead in his Ten Thousand Birds (2014) puts 1888 on the ornithological timeline to mark this landmark work.

Fürbringer's work is also remarkable because he finally produced a graphical summary of his entire work. An evolutionary tree and wait, it was a three-dimensional tree! He tried to represent it with side views from two opposite points and horizontal cross-sections at three levels. The cross-sections indicate phenetic distances between the groups. He seems to have hit upon some kind of manual equivalent of what we might produce today using canonical correspondence analysis. (It would be amazing if someone-who-knows-German could recreate his three-dimensional rendition and compare his own distance matrix which what a CCA algorithm would produce - Heidelberg University would do well to make a three-dimensional tree model as a tribute)


Front views of the avian tree.
Rear view of tree

Okay, so we now hopefully have a historical view of how the bird relationships were established. We still have a part of the original question hanging, why are chicken considered "primitive" or "basal" to use the more accurate phylogenetic term. The answer again lies in Fürbringer's scientific past- he had worked extensively on reptilian anatomy and he saw more of the older traits in parts of his bird-tree. Remember also that he tried to place extinct birds into the tree. Today, the way a tree is rooted or oriented is by comparing with an outgroup - a specimen that you know from prior knowledge to be distant enough to have a common shared ancestor with all the others that are in focus.

The specific characters that Gadow listed for the Galliformes (in which he also included the hoatzin) while he placed them as the 14th group (after the ratites, herons, seabirds and falcons but before the cranes) are :
  • Galliformes- Phytophagous. Nares impervious. Furcula with hypocleidium. Plagiocoelous type V. Caeca large. Crop globular. 10 primaries. 
    • Galli -  16 or more cervical vertebrae. Holorhinal. Coracoids touching each other. Flexors of type I. Hallux large. Neck without lateral apteria.
      • Gallidae -16 cervical vertebrae. Nidifugous. Spina communis sterni. Sternum with long posterior later processs and with obliue processes. Hypotarsus complex.
      • Opisthocomidae - 18 or 19 cervical vertebrae. Nidicolous. Spina externa only present. Sternum with small notches or fenestra only; no oblique process. Oil-gland tufted.
The Hoatzin has since been moved elsewhere but interestingly the claws on the hand used for clambering up vegetation are not even used.

That leaves one other question which is on whether the sizes matters in this sequence. It appears that the Galloanserae which appear early in the sequence are in general somewhat large sized, the ratites and flightless birds also tend to be large. At the other end of the spectrum the passerines tend to be small but it appears that there is no strong evolutionary trend in size.

Note: Thanks to Emmanuel Theophilus and Ashish Kothari for the original questions and discussions.
Postscript: Note that there were many other comparative anatomists in the period and many pieces of bird and reptile evolution had been figured out by several others including Archibald Garrod (1873-74 on muscles part 1 part 2 and W.H. Flower.
I have also found this very nice interactive site on comparative anatomy of birds that uses chicken as a model. 
Note that I had mistakenly attributed the parrot-falcon affinity to Fürbringer, turns out that he did not think much about it.
9 June 2016 - I have also found an interesting review by R.W. Shufeldt (that infamous racist!) which also summarizes the work of Professor William Kitchen Parker. Parker (1862) is quoted "I will first show, in two parallel columns, how both the Fowls and the Rails run insensibly through certain leading genera into the lowest (reptilian) types of diving-birds" 1862, William Kitchen Parker "On the Osteology of Gallinaceous Birds and Tinamous" in Shufeldt, R.W. (1904) An Arrangement of the Families and the Higher Groups of Birds. The American Naturalist 38(455/456):833-857.
Appendix - a list of the characters used by Gadow.

A.   Development.
Condition of young when hatched: whether uidifugous ur nidi-colous; whether naked or downy, or whether passing through a downy stage.
B.  Integument.
Structure and distribution of the first downs, and where distributed.
Structure and distribution of the downs in the adult: whether absent, or present on pteryls or on apteria or on both.
Lateral cervical pterylosis : whether solid or with apteria.
Dorso-spinal pterylosis : whether solid or with apterium, and whether forked or not.
Ventral pterylosis: extent of the median apterium.
Aftershaft:  whether present, rudimentary, or absent.
Number of primary remiges.
Cubital or secondary remiges: whether quinto-or aquinto-cubital.
Oil-gland: present or absent, nude or tufted.
Rhamphotheca: whether simple or compound, i. e. consisting of more than two pieces on the upper bill.
C. Skeleton.
Palate: Schizo-desmognathous.   Nares, whether pervious or impervious, i. e. with or without a complete solid naso-ethmoidal septum.
Basipterygoid processes: whether preseut, rudimentary, or absent: and their position.
Temporal fossa, whether deep or shallow.
Mandible: os angulare, whether truncated or produced ; long and straight or recurved.
Number of cervical vertebra;.
Haemapophyses of cervical and of thoracic vertebra;: occurrence and shape.
Spina externa and spina interna sterui: occurrence, size, and shape.
Posterior margin of the sternum, shape of.
Position of the basal ends  of the  coracoids: whether separate, touching, or overlapping.
Procuracoid process: its size and the mode of its combination with acrocoraeoid.
Furcula: shape; presence or absence of hypocleidium and of interclavicular process.
Groove on the humerus for the humero-coracoidal ligament: its occurrence and depth.
Humerus, with or without ectepicondj lar process.
Tibia: with bony or only with ligamentous bridge, near its distal tibio-tarsal end, for the long extensor tendons of the toes : occurrence and position of an intercondylar tubercle, in vicinity of the bridge.
Hypotarsus : formation with reference to the tendons of the long toe-muscles:—(1) simple, if having only one broad groove; (2) complex, if grooved and perforated ; (3) deeply grooved and to what extent, although not perforated.
Toes :   number and position, and connexions
D.  Muscles.
Garrod's symbols of thigh-muscles A B X Y,—used, however, in the negative sense.
Formation of the tendons of the m. flexor perforans digitorum : the number of modifications of which is 8 (I.-VIII.) according to the numbering in Bronn's Vogel, p. 195, and Fuerbringer, p. 1587.
E.   Syrinx.
Tracheal, broncho-tracheal, or bronchial.
Number and mode of insertion of syringeal muscles.
F.   Carotids.
If both right and left present, typical: or whether only left present, and the range of the modifications.
G.   Digestive Organs
Convolutions of the intestinal canal. Eight types, numbered L-VIIL, according to Bronn's Vogel, p. 708, and P. Z.S. 1889, pp. 303-
Caeca: whether functional or not.
Tongue: its shape.
Food.—Two principal divisions, i. e. Phytophagous or Zoophagous, with occasional subdivisions such as Herbivorous, Frugivorous, Piscivorous, Insectivorous, etc.

List of Characters employed occasionally.
Shape of bill.
Pattern of colour. Number of rectrices ; and mode of overlapping of wing-coverts, according to Goodchild (P.Z.S. 1886, pp. 184-203).
Vomer.    Pneumatic foramen of humerus.
Supraorbital glands.
Certain wing-muscles according to Fuerbringer.
Mode of life: Aquatic, Terrestrial, Aerial, Diurnal, Nocturnal, Rapacious, etc.
Mode of nesting: breeding in holes.
Structure of eggs.
Geographical distribution.

Tuesday, March 1, 2016

Some unsung Lepcha collectors

Photo from Bruce, C.G. (1923) The Assault on Mount Everest 1922. New York: Longmans, Green & Co.
A chance enquiry by Richard Conniff on some Lepcha collectors for his website for fallen naturalists led me to some very interesting tit-bits and as usual, I was surprised by the paucity of local interest and research. Not having had the good fortune of exploring the richness of north-eastern India (except for a short trip in Bhutan) it was hard to feel grounded with sufficient local context but reading through some of the available bits makes it clear that that so much local knowledge has been squandered in recent times. Hopefully someone based in Sikkim or nearby can make amends with a more detailed study.

The Gazetteer of Sikhim (1894) has an excellent introduction to ethnic and biological diversity. It includes a list of birds along with Lepcha names. It also has bits of local bio-lore such as notes on birds of good and ill omen. The sections on butterflies was written by J. Gammie and Lionel de Niceville while the one on birds was by L.A.Waddell. Wadell writes while dealing with the birds:
The Pahariyas, speaking a Sanskritic dialect- the Parbatiya, and the Bhotiyas, including the Tibetans are much less discriminating in their bird-names than the Lepchas, who are "born naturalists";  - [1894. The Gazetteer of Sikhim. p. 202.]
The butterfly section by Niceville makes a tantalizing statement but sadly, he does not actually list the Lepcha names for butterflies:
It might be noted that the Lepcha collectors of Sikhim are most skilful, and would compare favourably with those of any country in the world: they are the only race in Hindostan who have names for the different species of butterflies. - [1894. The Gazetteer of Sikhim. p. 115.]
Mycalesis (Pachama) mestra, Hewitson. Has frequently been brought into Darjeeling from the neighbourhood of Buxa in Bhutan by the Lepcha collectors employed by Messrs. Otto and F.A. Moller, A.V.Knygett and G.C.Dudgeon. -[1894. The Gazetteer of Sikhim. p. 121.]
It turns out that Lepcha butterfly collectors went far from their traditional grounds.  
In 1893 and 1894 Mr de Niceville induced three amateur collectors in British India to send down to Sumatra some of the well-known Lepcha collectors from Darjiling to Dr Martin's care. These men met with very good success, though at first they were afraid to mix with the cannibal Battaks, and refused to go to the mountains. However, after giving them a Battak guide and interpreter, they went off to the hills regularly, and did very well there. - [Anon. (1896) Reviews and notices of book. The Butterflies of Sumatra. The Entomologist's Record and Journal of Variation 8(1):22-24.]
And some of them perished in their travels (the original enquiry) and the only person to have taken some trouble to document the Lepcha collectors has been C.F.Cowan. In his 1967 note in the Journal of the Bombay Natural History Society he finds some information on the collectors of William Doherty, the famous butterfly collector. When Doherty fell ill in Africa, his Lepcha assistants carried him to the hospital in Nairobi. Doherty wrote to Elwes: "I had to go to Darjeeling for my Lepchas and got two fairly good men: I have also two other men... and hope to keep them permanently." He had his Lepchas climb hills, "Each of my men used to take a peak and stay there all day". One collector, Pambu, made treetop platforms and stayed on them all day. Doherty took some of his collectors to Java and in his letters to Ernst Hartert mentions Chedi and Tungkyitbo (who died at sea). It seems that some of the collectors stayed on in the Malay peninsula and worked for other collectors like Oberthur. These include Lakatt and Pamboo. Lakatt returned to Calcutta in 1895. Pambu unfortunately did not make it and was "murdered by savages" on Japen Island, Geelving Bay, West Irian in 1898. Cowan notes: 
So passed Pambu, working some 5000 miles from home. We can picture him a dedicated and enterprising naturalist, a faithful and cheerful companion and a staunch and steady friend. 
Lakatt's name has been commemorated in butterfly nomenclature by the Lycaenid Jamides zebra lakatti Corbet, 1940 (Proc. R. ent. Soc. London (B) 9:2). It is hoped shortly to give Pambu similar recognition.

Lepcha bird trappers find a mention in Mackintosh's  Birds of Darjeeling (1915) - with a comment on Lepchas imitating the call of Glaucidium brodiei to lure small passerines.

Lepcha collectors were in demand among the botanists as well. They not only found the plants but processed them into herbarium sheets (Lepcha boxes of butterfly specimens are also mentioned).
Mr Cave of the Loyd Botanic Gardent at Darjiling, who provided an admirable Lepcha collector always active and good-tempered, and helped me to find my way among so many genera that were strange.  [Lacaita, C.C. (1916) Plants collected in Sikkim, including the Kalimpong District, April 8th to May 9th, 1913. Botanical Journal of the Linnean Society 43:457-492.]
Portrait of Dr Hooker with his Lepcha collectors -
original painting by Frank Stone mezzotint by William Walker

Hooker, in his introduction to the work of J.F.Cathcart, an amateur botanist notes:
He had already established a corps of Lepcha collectors, who scoured the neighbouring forests, descending to 2000 feet, and ascending to 8000 bringing every plant that was to be found in flower; and in his house were two artists busily at work. He told me his plans, and invited my co-operation ; he intended to procure more artists, the best that could be obtained, from Calcutta, especially those skilled ones, who had been trained under Wallich and Griffith in the Botanic Garden, and to draw every plant of interest that he or I could procure. Knowing that a Flora of the Himalaya was a work which I contemplated, he most liberally offered me the use of all the drawings on my return to England, and expressed a wish that I should direct his artists to the plants best worth figuring, and instruct them in perspective, and in drawing the microscopic details, the points in which native artists are mainly deficient. -[J. D. Hooker in his introduction to J.F. Cathcart's - Illustrations of Himalayan Plants (1855) ]
Hooker's collectors maintained careful accounts written in the Lepcha script of which there is an interesting description from the Kew archives. [Sprigg, R.K. (1983) Hooker's Expenses in Sikkim: An Early Lepcha Text. Bulletin of the School of Oriental and African Studies. 46(2):305-325.]

George King of the Calcutta botanical garden also used Lepcha collectors and we find mention of the names of Dungboo  and Dotho.

The tradition seems to have continued at least till the late 1920s for we find mention of Rohmoo pictured at the head of this article. Rohmoo worked along with another collector Ribu for several botanists in the Botanical Survey of India and the Lloyd Botanical Garden at Darjeeling. He collected for several botanical expeditions in Sikkim including those of William Wright Smith, George H. Cave and Roland Edgar Cooper. Poa rohmooana was named after him by Henry Noltie in his Flora of Bhutan.

A statement by H.H.Risley (the physical anthropologist) in the introduction to the Gazetteer is particularly striking:
The Lepchas alone seem to doubt whether life is worth living under the shadow of advancing civilisation, and there can, we fear, be little question that this interesting and attractive race will soon go the way of the forest which they believe to be their original home. 

A similar pessimistic outlook is expressed by Florence Donaldson in her book Lepcha land, or Six weeks in the Sikhim Himalayas (1900).
Current events... are likely to open the flood-gates of Western civilization. But when this comes to pass, "Lepcha Land" will be a misnomer, and another primitive, patriarchal and peace-loving people will have died out.
PS: It turns out that some researchers have tried some very interesting experiments, using Lepchas to monitor bird species.

Further reading